Exercise 10

Prove that
(a) z is real if and only if $\bar{z}=z$;
(b) z is either real or pure imaginary if and only if $\bar{z}^{2}=z^{2}$.

Solution

$\underline{\text { Part (a) }}$
Suppose that z is real. Then $z=x+i 0=x$ and $\bar{z}=x-i 0=x$. Thus, $\bar{z}=z$.
Suppose that $\bar{z}=z$. Then $x-i y=x+i y$, or $-i y=i y$. This equation is only satisfied if $y=0$. The imaginary component is zero, so z is real.

Therefore, z is real if and only if $\bar{z}=z$.

Part (b)

Suppose that z is real. Then $\bar{z}=z$ from part (a). Square both sides to get $\bar{z}^{2}=z^{2}$.
Suppose that z is purely imaginary. Then $z=0+i y=i y$ and $\bar{z}=0-i y=-i y$. Then $z^{2}=-y^{2}=\bar{z}^{2}$.

Suppose that $\bar{z}^{2}=z^{2}$. Then

$$
\begin{aligned}
&(x-i y)^{2}=(x+i y)^{2} \\
& x^{2}-2 i x y-y^{2}=x^{2}+2 i x y-y^{2} \\
&-2 i x y=2 i x y \\
& x y=0 \\
& x=0 \quad \text { or } \quad y=0 .
\end{aligned}
$$

Thus, $z=x+i y$ is either real or purely imaginary.
Therefore, z is either real or purely imaginary if and only if $\bar{z}^{2}=z^{2}$.

